Bisectors in Minkowski 3-Space

نویسنده

  • Á. G. Horváth
چکیده

We discuss the concept of the bisector of a segment in a Minkowski normed n-space. We prove that all bisectors are topological images of a plane of the embedding Euclidean 3-space iff the shadow boundaries of the unit ball K are topological circles. To a conjectured proving strategy for dimensions n, we introduce the concept of general parameter sphere of the unit ballK, corresponding to a direction vector of the n-space and to a positive parameter. We prove that the Haussdorff limit of these “spheres” is the shadow boundary of K of the same direction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal points of convex bodies and bisectors in Minkowski spaces

We deal with different properties of a smooth and strictly convex body that depend on the behavior of the planar sections of the body parallel to and close to a given tangent plane. The first topic is boundary points where any given convex domain in the tangent plane can be approximated by a sequence of suitably rescaled planar sections (so-called p-universal points). In the second topic, the g...

متن کامل

m-Projections involving Minkowski inverse and range symmetric property in Minkowski space

In this paper we study the impact of Minkowski metric matrix on a projection in the Minkowski Space M along with their basic algebraic and geometric properties.The relation between the m-projections and the Minkowski inverse of a matrix A in the minkowski space M is derived. In the remaining portion commutativity of Minkowski inverse in Minkowski Space M is analyzed in terms of m-projections as...

متن کامل

The Geometry of Minkowski Spaces — A Survey. Part II

In this second part of a series of surveys on the geometry of finite dimensional Banach spaces (Minkowski spaces) we discuss results that refer to the following three topics: bodies of constant Minkowski width, generalized convexity notions that are important for Minkowski spaces, and bisectors as well as Voronoi diagrams in Minkowski spaces.

متن کامل

Translation Surfaces of the Third Fundamental Form in Lorentz-Minkowski Space

In this paper we study translation surfaces with the non-degenerate third fundamental form in Lorentz- Minkowski space $mathbb{L}^{3}$. As a result, we classify translation surfaces satisfying an equation in terms of the position vector field and the Laplace operator with respect to the third fundamental form $III$ on the surface.

متن کامل

$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$

Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004